我们介绍了时间多模式的多模式学习,这是一个新的决策模型系列,可以间接学习和传输在线信息,同时观察一个概率分布,该概率分布有一个以上的峰值或一个以上的结果变量,从一个时间阶段到另一个时间阶段。我们通过基于数据生理学驱动的相关性依次删除不同变量和时间之间的其他不确定性来近似后部,以解决不确定性下的更广泛的挑战性时间依赖性决策问题。对现实世界数据集的广泛实验(即,城市交通数据和飓风整体预测数据)证明了拟议的有针对性决策的卓越性能,而不是各种设置的最先进的基线预测方法。
translated by 谷歌翻译
端到端(E2E)模型通常通过浅融合伴随语言模型(LMS),以提高其整体质量以及对稀有单词的认可。同时,几项先前的作品表明,LMS容易在训练数据中无意中记住稀有或独特的序列。在这项工作中,我们设计了一个框架,用于检测LM培训数据中随机文本序列的记忆(我们称为Canaries),当一个人只有Black-Box(Query)访问LM融合语音识别器,而不是直接访问到达LM融合语音识别器LM。在与变压器LM融合的生产级构象体RNN-T E2E模型中,我们表明可以从300m示例的LM训练数据中检测到单一疾病的金丝雀的记忆。我们还激发了保护隐私的动机,我们还表明,通过示例梯度倾斜的LM培训而没有损害整体质量,这种记忆会大大减少。
translated by 谷歌翻译
在异构机器人网络上进行计算负载共享是一个有希望的方法,可以将机器人能力和效率作为极端环境中的团队提高。然而,在这种环境中,通信链路可以是间歇性的,并且与云或因特网的连接可能是不存在的。在本文中,我们介绍了用于多机器人系统的通信感知,计算任务调度问题,并提出了整数线性程序(ILP),该程序(ILP)优化了异构机器人网络中的计算任务分配,占网络机器人的计算能力对于可用(和可能的时变)通信链接。我们考虑调度由依赖关系图建模的一组相互依赖的必需任务和可选任务。我们为共享世界,分布式系统提供了一项备份的调度架构。我们验证了ILP制定和不同计算平台中的分布式实现,并在模拟场景中,偏向于月球或行星探索方案。我们的研究结果表明,与没有计算负载共享的类似系统相比,所提出的实施方式可以优化提高时间表以允许三倍增加所执行的奖励任务的数量(例如,科学测量)。
translated by 谷歌翻译
员额推理攻击允许对训练的机器学习模型进行对手以预测模型的训练数据集中包含特定示例。目前使用平均案例的“精度”度量来评估这些攻击,该攻击未能表征攻击是否可以自信地识别培训集的任何成员。我们认为,应该通过计算其低(例如<0.1%)假阳性率来计算攻击来评估攻击,并在以这种方式评估时发现大多数事先攻击差。为了解决这一问题,我们开发了一个仔细结合文献中多种想法的似然比攻击(Lira)。我们的攻击是低于虚假阳性率的10倍,并且在攻击现有度量的情况下也严格占主导地位。
translated by 谷歌翻译
船上自治技术,如规划和调度,识别科学目标和基于内容的数据摘要,将导致令人兴奋的新空间科学任务。然而,尚未研究具有此类船上自治能力的经营任务的挑战,这是足以在使命概念中考虑的细节水平。这些自主功能需要更改当前的操作流程,实践和工具。我们制定了一个案例研究,以评估使运营商和科学家通过促进地面人员和车载算法之间的共同模型来运营自主航天器所需的变化。我们评估使运营商和科学家能够向航天器传达所需的新的操作工具和工作流程,并能够重建和解释船上和航天器状态的决定。这些工具的模型用于用户学习,了解过程和工具在实现共享理解框架方面的有效性,以及在运营商和科学家有效实现特派团科学目标的能力。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
We consider the contextual bandit problem on general action and context spaces, where the learner's rewards depend on their selected actions and an observable context. This generalizes the standard multi-armed bandit to the case where side information is available, e.g., patients' records or customers' history, which allows for personalized treatment. We focus on consistency -- vanishing regret compared to the optimal policy -- and show that for large classes of non-i.i.d. contexts, consistency can be achieved regardless of the time-invariant reward mechanism, a property known as universal consistency. Precisely, we first give necessary and sufficient conditions on the context-generating process for universal consistency to be possible. Second, we show that there always exists an algorithm that guarantees universal consistency whenever this is achievable, called an optimistically universal learning rule. Interestingly, for finite action spaces, learnable processes for universal learning are exactly the same as in the full-feedback setting of supervised learning, previously studied in the literature. In other words, learning can be performed with partial feedback without any generalization cost. The algorithms balance a trade-off between generalization (similar to structural risk minimization) and personalization (tailoring actions to specific contexts). Lastly, we consider the case of added continuity assumptions on rewards and show that these lead to universal consistency for significantly larger classes of data-generating processes.
translated by 谷歌翻译
This paper introduces a learned hierarchical B-frame coding scheme in response to the Grand Challenge on Neural Network-based Video Coding at ISCAS 2023. We address specifically three issues, including (1) B-frame coding, (2) YUV 4:2:0 coding, and (3) content-adaptive variable-rate coding with only one single model. Most learned video codecs operate internally in the RGB domain for P-frame coding. B-frame coding for YUV 4:2:0 content is largely under-explored. In addition, while there have been prior works on variable-rate coding with conditional convolution, most of them fail to consider the content information. We build our scheme on conditional augmented normalized flows (CANF). It features conditional motion and inter-frame codecs for efficient B-frame coding. To cope with YUV 4:2:0 content, two conditional inter-frame codecs are used to process the Y and UV components separately, with the coding of the UV components conditioned additionally on the Y component. Moreover, we introduce adaptive feature modulation in every convolutional layer, taking into account both the content information and the coding levels of B-frames to achieve content-adaptive variable-rate coding. Experimental results show that our model outperforms x265 and the winner of last year's challenge on commonly used datasets in terms of PSNR-YUV.
translated by 谷歌翻译
Recently, e-scooter-involved crashes have increased significantly but little information is available about the behaviors of on-road e-scooter riders. Most existing e-scooter crash research was based on retrospectively descriptive media reports, emergency room patient records, and crash reports. This paper presents a naturalistic driving study with a focus on e-scooter and vehicle encounters. The goal is to quantitatively measure the behaviors of e-scooter riders in different encounters to help facilitate crash scenario modeling, baseline behavior modeling, and the potential future development of in-vehicle mitigation algorithms. The data was collected using an instrumented vehicle and an e-scooter rider wearable system, respectively. A three-step data analysis process is developed. First, semi-automatic data labeling extracts e-scooter rider images and non-rider human images in similar environments to train an e-scooter-rider classifier. Then, a multi-step scene reconstruction pipeline generates vehicle and e-scooter trajectories in all encounters. The final step is to model e-scooter rider behaviors and e-scooter-vehicle encounter scenarios. A total of 500 vehicle to e-scooter interactions are analyzed. The variables pertaining to the same are also discussed in this paper.
translated by 谷歌翻译
As one of the most popular micro-mobility options, e-scooters are spreading in hundreds of big cities and college towns in the US and worldwide. In the meantime, e-scooters are also posing new challenges to traffic safety. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than the pedestrains and bicyclists. These features make e-scooters challenging for human drivers, pedestrians, vehicle active safety modules, and self-driving modules to see and interact. To study this new mobility option and address e-scooter riders' and other road users' safety concerns, this paper proposes a wearable data collection system for investigating the micro-level e-Scooter motion behavior in a Naturalistic road environment. An e-Scooter-based data acquisition system has been developed by integrating LiDAR, cameras, and GPS using the robot operating system (ROS). Software frameworks are developed to support hardware interfaces, sensor operation, sensor synchronization, and data saving. The integrated system can collect data continuously for hours, meeting all the requirements including calibration accuracy and capability of collecting the vehicle and e-Scooter encountering data.
translated by 谷歌翻译